Strip-Tilling Corn With Carbon Boost-S Increases Yield

Using Carbon Boost – a nutrient enhancement product – significantly increased corn yields in research plots

Strip-Tilling Corn With Carbon Boost-S Increases Yield By 53 Bushels
By Dan Zinkand

Using Carbon Boost-S — a nutrient enhancement product — increased irrigated corn yields by almost 54 bushels per acre in strip-till research at Orthman Mfg. Co.’s research farm at Lexington, Neb., in 2011, says Mike Petersen, Orthman’s precision tillage agronomist.

“With 16 ounces of Carbon Boost-S in the tank-mix of liquid fertilizer that was strip-tilled 30 days before planting, the Hoegemeyer 8228 hybrid yielded 253.15 bushels per acre,” Petersen says. That compares to the check of the hybrid without any Carbon Boost-S, which yielded 199.45 bushels per acre. “The bottom line is that using Carbon Boost-S increased the yield by 53.7 bushels,” Petersen says. “At $6.50 a bushel, that’s $349.05 of additional gross revenue per acre.”

Back-to-Back Yield Increases

Mike Petersen and others inspect results from a side-by-side field trialThese impressive results from the 2011 on-farm research build on the work Petersen did with Carbon Boost-S at the Orthman farm in 2010. “Corn yields increased by 26 and 30 bushels per acre, when Carbon Boost-S was applied pre-plant,” Petersen says. “When we used Carbon Boost and a 6 ounce per acre in-furrow treatment, corn yields rose by 15 and 24 bushels per acre. With these results in 2010, followed by those in 2011, we’re verifying that Carbon Boost-S delivers very respectable yield improvements two years in a row. In this case, it’s doing so on corn grown on high pH soils.”

Why Evaluate Carbon Boost-S

Evaluating Carbon Boost-S at Orthman’s Research Farm makes sense for several reasons, Petersen says. “From our research, as well as that at Oklahoma State, the University of Minnesota, Purdue University, as well as our on-farm research at the Irrigation Research Foundation in eastern Colorado, we know how important it is to precisely place fertilizer in a band and then plant on this band.” he says. “In fact, at the Orthman Research Farm, we have studied the yield impact of planting corn on top of that band, as well as 4 inches and 8 inches off of that band. Our research, that at these land grant universities and at the IRF, Yuma, Colorado, show yield losses of 11 to 30 bushels per acre when corn is not planted on top of that band.”

But Petersen says Orthman wants to know other factors that affect yield, including how close the plant is to the band of fertilizer. “We began on-farm trials with Carbon Boost-S in 2010, after hearing that the product could help the new roots of corn plants take up and use fertilizer better,” he says. “For two years running, we’ve seen the roots of corn grow faster and increase in greater number where Carbon Boost-S was used. Also the soil volume was explored and length of the roots are greater. There are more roots per plant and they are deeper. And the yield results are very eye opening.”

More 2010 Corn Yield Results

In 2010, with Carbon Boost-S and humic acid, Hoegemeyer 8228 yielded 215.26 bushels per acre, compared to the 199.45 bushels per acre in the check, Petersen says. “This 112-day relative maturity hybrid evidently likes Carbon Boost-S,” he says. “It’s a flex-ear hybrid, which flexes for the length and the girth of the ear. Using Carbon Boost-S and humic acid helped this hybrid a whole lot.”

Carbon Boost-S is a proprietary product of FBSciences, Collierville, Tenn.

Carbon Boost-S helps plants translocate nitrogen, phosphorus, potassium and micronutrients, and it can be used with dry and liquid fertilizer,” says Mark Seipel, regional sales manager, FBSciences. Rates in corn are 8 to 12 ounces per application.

Carbon Boost-S is a highly refined compound that FBSciences derived from a unique source that works inside the plant to help in plant growth and stress mitigation,” says Seipel, who spent 24 years working with strip-till equipment manufacturers before joining FBSciences in 2008.”Farmers can use Carbon Boost-S when strip-tilling in the spring, with in-furrow, sidedress and foliar applications and with herbicides, insecticides and fungicides.” Seipel says.

Petersen says using Carbon Boost-S and humic acid also increased yields for Hoegemeyer’s 7998 hybrid. It is a 109-day relative-maturity determinate or “fixed” ear hybrid. The check yielded 194.03 bushels per acre, while Carbon Boost-S with humic acid produced 206.24 bushels per acre. “The yield results with Hoegemeyer 7998 show we are getting about a 5% yield boost by using Carbon Boost-S and humic acid,” Petersen says. “That’s a pretty darned good yield response.” In 2011, the corn yields at Orthman’s research farm averaged 172 bushels per acre.

2011 Research Trials

Petersen started working with Carbon Boost-S in 2010. That year, the product increased yields of irrigated strip-tilled corn by 30 bushels per acre at Orthman’s Research Farm in Lexington, Neb. Strip tillage corn studyThe 2011 plots where Petersen tested Carbon Boost-S were 100 feet from the 2010 test plots. In 2011, Petersen tested the two Hoegemeyer hybrids in eight rows on 30-inch spacing. Each of the rows was strip-tilled and was 1,390 feet long.

Thirty days before planting the corn on May 4, 2011, Petersen applied 16 ounces per acre of liquid Carbon Boost-S. It was mixed in the liquid fertilizer he applied with an 8-row, 30-inch spacing Orthman 1tRIPr strip-till machine. The 1tRIPr banded 72 pounds per acre of nitrogen, along with 38 pounds per acre of phosphate, 12 pounds of potash, 5 pounds of sulfur and 1 pound of zinc.

“The liquid fertilizer was placed at a depth of 4 and 9 inches in the strip made by the Orthman 1tRIPr,” Petersen says. “Thirty percent of the fertilizer was applied at a depth of 4 inches and 70% of the fertilizer was placed 9 inches deep. We split the application from the same tank mix with two pumps and two sets of tubes to deliver the products right behind the mole shank at the two depths.” Petersen planted the plots on May 4 with an 8-row, 30-inch spacing planter. The 1770 John Deere 3-point-hitch planter has plate-type Max Emerge row units on an Orthman 910NT folding toolbar. “We placed starter fertilizer in the furrow,” Petersen says. “We used Kugler’s KQ15-15. It’s a specialty product, which is comprised of 15% nitrogen, 15% phosphorus and 2% potash. We used 4 gallons per acre. This works out to 6 pounds each of nitrogen and phosphate and 1 pound of potash per acre.”

Apply Early

In his work with Dr. John Bradley, FBSciences’ Vice President of Technical Sales Support, and Mark Seipel, FBSciences’ regional sales manager, Petersen has learned that Carbon Boost-S seems to work best in pH levels below 6.2 or soils with pH above 7.6. “The soil where we planted these two hybrids for the 2011 Carbon Boost-S research has a pH of 8.2,” Petersen says. “That’s fairly alkaline because neutral is 7.0. Based on what Dr. Bradley and Mark Seipel have shared with me, we were using Carbon Boost-S in a soil where the high pH creates more stress on a young corn plant, especially in phosphorus uptake.” Low or high pH and salinity can have many detrimental effects on the early life of the corn plant, Petersen says. “In a more hostile environment — high pH and low pH — Carbon Boost-S makes a significant difference early on in the life of the corn plant,” he says. “It helps the plant deal with this stress early on its life and it gives the corn a boost. This helps the development of the roots. That, in turn, improves the health of the corn plant and its yield.”

Common Questions About Carbon Boost-S

After testing Carbon Boost-S for two growing seasons, Petersen says he’s accustomed to farmers asking him about the value of using Carbon Boost-S, when to use it and how much to apply. Here are some of the frequently asked questions.

Q. Is Carbon Boost-S Too Good To Be True?
“First of all, farmers ask me if Carbon Boost-S is too good to be true,” Petersen says. “I’ve worked with many adjuvant products since the 1990s when I was a soil scientist for the USDA’s Natural Resources Conservation Service. There are a lot of naysayers who just say that Carbon Boost-S is ‘snake oil.’ That’s just not the case.”

Q. How much will corn yields increase with Carbon Boost-S?
When used in strip-tilled corn at the Orthman research farm in western Nebraska, yields increased by as much as 53.7 bushels per acre in 2011 and by as much as 30 bushels per acre in 2010. The results varied in 2010 based on when and how Carbon Boost-S was applied. “Using Carbon Boost-S pre-plant, corn yields increased by 26 and 30 bushels per acre,” Petersen says. “When we used Carbon Boost-S and a 6 ounce per acre in-furrow treatment, corn yields rose by 15 and 24 bushels per acre in 2010.” In the research that FBSciences has done, they conservatively estimate increases will average 8 bushels per acre, says Bradley, FBSciences’ Vice-President of Technical Sales Support.

“First of all, at our Nebraska site we are starting the corn plants in a very friendly soil environment with strip-till,” Petersen says. “Secondly, we are placing nutrients near the actively growing root system to feed this hungry plant. Thirdly, minimizing early stress during the 40-50 day period when corn sets its row count on the cob allows a hybrid to reach its highest potential yield.”

Q. Why Try Carbon Boost-S?
“I was willing to give Carbon Boost-S a try because I’ve known Dr. Bradley for many years and I knew he wouldn’t get involved with something that was baloney,” Petersen says. “When dealing with cooler soil environments, saline soils — which have higher pH — and 7 tons per acre of residue left over from the previous year’s corn crop, I wanted something that will help the roots thrive even more in the strip-till system. And when I talked to John Bradley he told me, ‘You won’t regret it.'”

Q. What Rates And Timing Should Be Used?
“In 2010, we tried Carbon Boost-S both in furrow and with strip-till,” Petersen says. “After harvesting the plots in the fall of 2010, we learned that the biggest bang for the buck came where we used Carbon Boost-S when we strip-tilled in the spring.” It’s important to apply Carbon Boost-S before seeds germinate,” he says. “Get it on as early as possible in order to set the plant up to develop a better root system.”

FBSciences also stresses the importance of applying Carbon Boost-S after corn emerges. After the 2010 growing season and on-farm tests, Petersen told Dr. Bradley that he thought they should increase the rate of Carbon Boost-S from 10 ounces per acre in 2010 to 16 ounces per acre in 2011. By increasing the amount of Carbon Boost-S, Petersen said he thought they would see more consistent results. By raising the amount of Carbon Boost-S to 16 ounces per acre applied when strip-tilling, Petersen figured that there would be no need to put on any with the planter. He also thought adding humic acid with the Carbon Boost-S would help on higher pH soils.

In 2010, using Carbon Boost-S in furrow only yielded another 2 bushels per acre. “I don’t think that paid for itself,” Petersen says. “So in 2011, we applied 16 ounces of Carbon Boost-S per acre when strip-tilling, but we did not put on any at planting in the furrow as we did in 2010.”

Q. Should We Use Carbon Boost-S Only At Planting?
“You can choose to apply Carbon Boost-S only at planting,” Petersen says. “But Dr. Bradley tells me that the best results come when it is applied so that it is available when the seed germinates and the plant starts growing and developing its roots. I felt it was important to have Carbon Boost-S on the soil complex as the roots grew downward.”

Q. What About Solubility And Center Pivots?
“Strip-tillers also ask me whether Carbon Boost-S is soluble in all forms and whether they can put it on through a center pivot,” Petersen says. “The answer to both questions is ‘yes.'”

Q. How Much Does It Cost?
“Farmers always want to know what the product costs and it’s reasonable,” Petersen says. Carbon Boost-S costs $1.10 per ounce, according to FBSciences.

Q. How Deep Should Carbon Boost-S Be Banded?
“Strip-tillers also ask me how deep they should place Carbon Boost-S,” Petersen says. “I recommend placing it at the depths of 4 inches and 9 inches in the strip created by Orthman’s 1tRIPr strip-till machine. Our approach with the 1tRIPr offers precision tillage and that includes precision placement of fertilizer.”

Q. Is More Carbon Boost-S Better Than Recommended Rates?
Of course, many farmers want to know if some of a product is good, will more of it be better. “Strip-tillers have asked me if there are advantages of 24 ounces per acre or more of Carbon Boost-S vs. the rates we tried in 2010 and 2011,” Petersen says. “I don’t know yet, although I’ve said that more product will cost more money. Dr. Bradley has explained to me that there’s an incremental benefit from increasing the rate of Carbon Boost-S,” as well as multiple applications. “There is a benefit to increasing the rate, depending on the method of application,” says Dr. Bradley. “We also know there is an incremental benefit from multiple applications of Carbon Boost-S. For example, in strip-tilling and in sidedressing, we have seen positive yield responses to multiple applications of Carbon Boost-S throughout the growing season.”

Q. What’s Next For The 2012 Growing Season?
In 2012, Petersen plans on trying Carbon Boost-S in research trials with soybeans to see if it will increase yields. He will also continue his work with Carbon Boost-S in irrigated strip-tilled corn. Petersen plans on applying 8 to 10 ounces per acre of Carbon Boost-S through a center pivot as a foliar application as they apply 32% nitrogen through the pivot. Petersen says that using Carbon Boost-S with Orthman’s 1tRIPr shows the benefits of precision tillage. “I believe that placing Carbon Boost-S prior to planting with the 1tRIPr gives the crop and the farmer an advantage,” he says. “And for strip-till and precision placement of fertilizer to succeed, RTK GPS is a must. Using implement guidance would be frosting on the cake.”

Download this article

Leave a Reply