Another set of Soil Scientists, Offer what this Soil Scientist has said for 35 years — Soil Compaction Decreases Growth, Carbon Assimilation & Productivity

In Hungary, an example of grower placing nutrients, strip-tilling for the 2018 crop Courtesy: KITE Z.Rt.

Please read this without the slowed jabbing response of the “yeah, yeah they all are alike with the mantra that Compaction of Soils cause problems”.  Nor does this mean go out as soon as the soils allow and tear, rip, plow, disk, chisel, burn diesel fuel until the fuel provider says I can’t get there today nor tomorrow.  Maybe that is a little melodramatic.  As you read this blog on the last day of December 2019 going into a new decade, consider what 1700+ opened soil pits in fields all across the United States and several foreign countries, hundreds of penetrometer readings and measuring root lengths and depths which for me take happily hours of up-close-and-personal work, all for the sake of helping farmers know their soil conditions and improve their farming practices.

So what is the big deal?  Both in my governmental career (34 years) and now in the private sector since 2006 working for Orthman Manufacturing, Inc, I have worked and still do to provide the farmer better understanding of the soils we attempt to grow food crops in and produce a yield of grain, root crops, vegetables, nuts, citrus, forage and fiber.  With the advent of bigger tractors, larger planters, sprayers, combines (harvesters), grain wagons, large disk-chisel tools and yes even larger vertical tillage implements with variable gang angles – farmers still compact soils.  In 2019 I admit folks it was a do or maybe not even grow anything.

Considering the soil compacted issue and what these four scientists wrote in a paper that I read during this end of the year set of days following Santa’s arrival and fly-by.  In Soil & Tillage Research, an Elsevier technical publication they publishedEffect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system” 2003.  That compacted soils decrease stomatal opening in the leaves of corn which means a decrease in carbon assimilation to the fruiting body of the plant and to the leaves, stems and nodes.  Okay what did I say?  Sugars, cellulosic materials, lignin, other carbon materials that develop leaf tissues, stem size and length, number and size of kernels on the cob – all are reduced as well as root growth by 10 to 28% especially in the first 50 days of growth.  A good thing though — Soil rhizodeposition, an outpouring of carbon based materials are released to the area surrounding the roots to feed the microbial biomass by secretions and excretions.  The microbes get treats but the plant suffers!!

Birdseye view of an Orthman 1tRIPr doing it right
Courtesy: Wellacrest Farms

Many of you already know this.  How we treat the soil in pre-plant tillage to planting to harvest operations can and does have profound impact on the soil ladies and gentlemen.  Carrying out smarter tillage practices such as Strip-Till to prepare the seedbed can offer significant  reduction in what lateral tillage operations have done since the plow turned over the Prairies of the United States in the 1800’s.  We have better ways and methods than the moldboard plow folks.  The scientists further detailed that water relationships are directly in a negative fashion effectively reducing biomass production and potentially yield since they did not take this to grain harvest.  These folks said it with the review processes and the print of a professional journal.

It is my wish that when tilling to prepare a seedbed the method of Strip-Till greatly lessens the issue of soil compaction in what we call the Strip-Till Zone.  All this allows for more medium and larger pores to return to the upper portions of the soil profile because roots are not restricted from developing early on in the crops life, water intake can improve, nutrients can be strategically placed in the root pathway and the plant can grow, respire and assimilate carbon for a productive outcome.  I can go on.

What came from this paper was what I have said for all these years, “soil compaction unless we are building a pad for an oil well or highway or a large 10 story building is limiting plants from reaching their genetic potential and you the farmer making reasonable profits.”

Keep watching, reading and do not hesitate to contact us at Orthman Manufacturing how the Strip-Till System of farming today’s row crops is a best management practice that can put dollars into the bank.


Some Hidden Details About Adding Manure with Strip-Till

I wrote in an article earlier this month [December 2019] about microbial functions of soils by keeping living roots active as long as possible and what that implies to soil health.  Good stuff.  As of late I delved into more reading of scientific journal articles dealing with additions of animal manure and how that affects microbial life, both microbes/bacteria and fungi.  Let me then bring that to you in terms and words that are I pray are understandable.  My wise now long passed grandfather who had an eighth grade education would tell me, “use of them there eighty dollar words Mike misses the mark.”  Yes sir they can.  So I will do my best to keep those $80 words to the minimum.

In the article I read, in NATURE by some scientists in the Netherlands and one from Brazil; Leite et al, “Organic nitrogen rearranges both structure and activity of the soilborne microbial seedbank” [2017] – they offered that adding manure and adding residues changes in microbial life, population and activity, as well as fungi, microbial predators (amoeba) as well  as the resilience of individual species of bacteria which can result in increases or decreases in availability of soil nutrients for plant use.  Some may say well that is obvious, or the proverbial Duh!  Let me go some further.

Soil biological functions begin when the emerging plant is first out of the ground.

The scientists involved in this study determined biologic communities via 16S and 18S rRNA gene sequencing analyses which is quite complex but establishes who is who according to their genetic code and who is who living in the soil.  They were looking at this at windows in time 32, 69 and 132 days after incorporation of the residues or manure or commercial nitrogen sources.  It was important in their research what the carbon to nitrogen ratio (C:N) of the organic material they added.  That C/N ratio can lead to N mineralization, when that value is 25/1 or less.  Above 25/1 organic N becomes immobilized or tends to become tied up.  It was the intent of these scientists to offer when perturbation [physical disturbance] of the soils occurs to  incorporate either the manure or the residues then microbial resilience and resistance to change could be evaluated.

As they added manure the activity of microbes clustered themselves separately compared to the higher C/N ratio wheat straw (84:1), or addition of lucerne (alfalfa), or corn residues (50:1) which favored the fungal growth.  The changes in the microbial community (those who are living and thriving multiplied in number) they observed by counting bacteria on plates, they included Proteobacteria and Actinobacteria.   It is known that Actinobacteria have a high metabolism when organic manure additions occur.  There are easily known 20 to 21 families of Actinobacteria with one of the most well known – Streptomyces.  Actinobacteria make up a significant portion of the bacteria who activate and work on both manures and organic residues and that Nitrospira being nitrite-oxidizing bacteria, they work in harmony with Actinobacteria together on high C/N ratio organic additions – straw and corn residues.

In another paper I read, in Frontiers in Microbiology, Sept. 2017, Das et al., these scientists incorporate composted cattle manure and composted swine manure to observe the overall activities of microbes as they grew rice and what happened to the population and dominant species of bacteria.  Moreover enzyme activity jumped to aid in the breakdown of the organic C and organic N with the addition of the composted cattle manure.  The addition of cattle manure enriched the species several fold with bacteria from the cow’s gut and stimulating those bacteria in low population already in the soil, such as Azospirillum, several Clostridium species, Magnetospirillum, Pseudomonas and Bacillus.  All of these bacterial species play key roles in complex carbon compounds and growth promotion of the plants that are planted after manure application.

Fall application of injecting manure via a strip till operation

The authors of the paper in NATURE made it clear that in short term (32 to 132 days) after addition of organic amendments the quality  of the organics in regards to quality (higher C/N ratio) affected the fungal community more than the bacterial.  That positive effect is due to the fungal hyphae being able to translocate nutrients such as N, P, S and Zn from the soil back to its host – the plant root.  Bacteria that live on the roots and on the Soil Organic Carbon materials (SOC) do the heavy lifting so to speak when it comes to manures added and they noted in the short term, may reduce plant nitrogen uptake.  Now when we introduce strip tillage to mix a portion of the manure, aid in warming the soil in the till zone, relieving soil density — we provide an environment to accelerate both bacterial and fungal life.  Consider fungal hyphae trying to grow in compacted soils where density reaches 250 to 500 lbs/square inch, just is not going to happen well at all.

Offer of a bit of summation; scientists assure us that adding organic residues with high carbon to nitrogen ratios (>40/1) mycorrhizae play a significant role in helping in the breakdown of the material to become soil organic carbon thusly release locked up N, P, K, S, Zn and other nutrients to the plant and bacteria.  Bacteria gain when manures are applied whether in liquid or more solid forms because of the lower C/N ratios in manure and manure adds to the species richness of the upper 4 to 12 inches of the soil profile.  The type of tillage with Strip-Till aids in warming soils in the immediate rootzone, activating more bacteria to utilize the organics but not burying, smothering and crushing the bacteria with more invasive tillage of the plow, disk, chisel and disk-chisel systems.  The incorporation is maybe a bit slower than a plow but the organics continue to release carbon sources for the biological activity to sustain life and nutrients to the planted crops.  As we at Orthman Manufacturing stress, placement of nutrients in the right place for the growing crop to have direct access is one of the keys to a Strip-Till System succeeding and you the grower improving yields and soil health and quality.

For Soil Health reasons, for aiding the soils to be rich and diverse with bacterial species to provide nutrition and root uptake – adding manure when possible is a good approach to soil management.  The old timers knew this, now soil scientists are quantifying the value and intelligence of what manure can mean to Better Soil Management practices today.

What Orthman Manufacturing Sees for 2020 Compaction Studies

Sending you all who consider this website/webpage a spot to be informed about the Strip-Till World as it turns with Orthman Manufacturing and the World Leading 1tRIPr regarding plans for more studies in the field hopefully in four states what is happening in the spring with Soil Compaction.  We are looking at what are the levels of (severity) of compaction in Conventional tilled fields, No-Till fields and then Strip-Tilled fields – mainly corn.  This last year – 2019, we measured some expected and not-so-expected numbers in moist to nearly wet conditions that surprised the farmers and then we saw Mohawk root conditions which limited growth and nutrient uptake.

Then later in the year before harvest we heard that corn fell over due to a couple of nasty days of winds 60mph+ with blown over corn due to Mohawk root systems and weakened stalk health due to plant health from maybe fertility uptake.  All not good.

As we reported here back this early fall, the amount of force that a young plant before V4 stage in corn, only has a limited amount of energy and push power at the root tips – up to 60psi.  But our measurements with a penetrometer showed even in loamy sand soils some conditions of 160psi resistance in the soils at 7-8 inches in a strip-tilled field.  Corn growth was slowed until it had a bit more age then went on, but yield was impacted just the same.  Now when the corn reachs V8 stage it has up to 160psi of force at the root tip to extend, but with soil density reaching levels of 400psi – oh the plant is going to struggle.

The image to the left is quite dramatic due to sidewall compaction which we measured this last spring after planting with a newer method of lateral compaction testing.  The smear really can do a number on the root systems growth potential.

So folks, this fall we should have a more complete set of results to share with you after we measure fields again this coming spring.  It is not our intent to bash anyone, but to offer field testing numbers that we know about and what is happening with the Strip-Till world and using technology to advocate being the best you can be in raising corn whether it is naturally rainfed or irrigated.  So please stay tuned.

More Information regarding Soil Health than just keeping some kind of plant living in the soil

Do not get me wrong I am a advocate of all roots; living or deceased doing good for a healthy soil.  But the big emphasis of being Cover Crops as the answer to soil health misses the many decks of a naval carrier like the USS Abraham Lincoln.  What do you mean Mike?  For a truly healthy soil a wider perspective of top soil health I suggest we look at soil structure, soil porosity (the importance of the varying soil pore sizes in the surface soil as well as subsurface and subsoil), pH, and what are the majority of the species of microbes (anaerobes, facultative anaerobes, aerobes).  Not all are represented in your soil surface horizons to be of benefit to you.  Firmacuties for instance when out of balance with other microbes in your soils can be of detriment to your soils be biologically in balance.

How do we find out what we have in my soils?  That maybe your question.  One can run the simpler soil tests that indicate respiration, fine when the soils are active and above 62-63 degrees Fahrenheit, but that does not give much indication who lives there and who is related to who.  Yes I am partly having you consider an more expensive test at a speciality lab.  Now not everyone is into such due to cost and then who knows what the dickens comes from the test, when to do it and where does one collect the sample(s) in the field.  Mike, what other soil tests that you mentioned in the first paragraph for soil health will aid me in determining if my soils are healthy or so-so?  Soil structure whether or not the soil aggregates are stable in a slaking tests which the NRCS can test with and for you.  A true soil scientist can give you an indication of the soil structure if your soils from the surface or subsurface is moderate medium granular or subangular blocky.  Having a soil test for bulk density can be done by some soil testing labs across the country.  Or a look at the soil with a 10X to 15X hand lens on a 4″X4″ block of soil carefully pulled from the 1 to 5 inch area of the soil profile or 2 to 6″ zone.  This kind of sample should be done in the spring or late winter before all the tillage is done.  Besides, the soils should be moist not dry.  Testing for pH is a standard tests from all soil testing labs whether private or University.  The Haney test and other soil respiration tests can be done but they require some handling, and timing issues along with storage and shipping.  Another suggestion; call your friendly NRCS office, speak to them about having an evaluation of your soil health by one of your states Soil Health guys or gals.  Most are very apt and willing to do that for you.

Couple different ways to test for part of the soil health of your soils

Three different tests that will expand your knowledge about your soils on your farms.  The Haney Test is one way as is the PLFA Microbial Community test.  Many more dollars because they are looking at the DNA signatures of the bacteria in the soil sample at the time of the sampling.  The Solvita tests is a one-time sample when the soils are warm (May into late August) to inform you if according to a standard how much CO2 is given off in a 24 hour period.  All of these tests are usually from your surface 4 inches of the soil profile.  If you would sample from 0-4 then 4-8 inches the numbers will be quite different but very informative.  Then there is the ole grab a handful of the soil from the surface 4 inches and smell it with the nose.  If there is that rich, earthy smell that is a little pungent – that is an aroma from the azotobacter and nitrosommonas little critters, a good thing but only broad brush look and smell.  Do not get me wrong, these are qualitative but can be of some good news.

The PLFA tests require as I said some special handling and shipping steps.  Those of you that want to really know will consider these tests.  May I suggest go on-line and search out who does and gives a sound report of what is happening.

When I do Soil-Root Pit digs and evaluations I have done many of the physical tests at that time to inform you of all what I know from my 45 years of soils experience and learning.  I can offer at the same time sampling for the other tests with a pit opened up.

Look into it folks.  The Soils World is an amazing place to learn more about your farming practices and what you are dealing with each year.



From Germany – The LARGEST Agricultural Exhibition on the Planet

Today is the last day of this  seven day event (maybe it feels a touch longer November 10–November 16), to show our technology and equipment to the all the European geography, Mid-East, Mid-Asia, Australia and some African nations.  Challenges to work to communicate in five and six language barriers  everyday but farming crosses many boundaries and we get the job done.  Our team from the home office in Lexington, Nebraska USA have met with numerous folks from associated companies to extend our technology and solid iron products to other markets that are quite different than the Corn Belt from Colorado to New York.  Twenty-seven of the thirty plus building complex are filled with every imaginable piece of machinery or component you can think of is here, might be in building 17  but it is here folks.

Orthman Mfg, Inc stand with the USA Pavillion

A very active time when a group of German farmers were speaking/asking 101 questions that would handle liquid slurry manure with the Orthman 1tRIPr before a crop of maize.  Questions of why manure is beneficial, why mineral dry fertilizer may have other attributes that applying manure misses.  Manure in Germany has to be incorporated via rules of the government within 1 hour of taking it from the manure pit.  It has to be tested for all the chemical components as well as for pathogens on the biological side.  Then there is a enormous quantity of swine, bovine and chicken waste that has to be taken care of in much of Europe.  Timber handling, to bearings and then to plastics – folks it is here.

We at Orthman Mfg. have shared our Precision Tillage story to growers, dealers, specialists, salesmen of the Strip-Tillage System that are coming to the realization that too much tillage in many countries has greatly diminished soil quality and it’s health.  Compaction is a world-wide concern that effects growers with nutrient uptake, water use, crop yield, fuel consumption and impacts the bottom line — generally quite negatively.  I have had interesting conversations about the lack of understanding of the microbiologic concerns so many have and that Orthman has a part to play in helping growers do a better job of growing crops in their soil system.

The numbers of folks that attend this show/exhibit nears 500,000 this year.  Spanish, English, German, Kazak, Uzbeki, Russian, Ukranian, Dutch, German, French, Spanish, Portuguese, Afrikaan, Chinese, Japanese and Oklahoman has been languages we have encountered. Those are the ones I can remember.

We will get back with everyone stateside next week.  We have learned a great deal and will have gained good information that will take the business and technology of Strip-Tillage and cultivation far into the future.

































News of the Mycorrhizal Front – The Yet to be Further Unlocked Frontier of Soils

I have been reading some very interesting documents (so many of you do not have to put hip waders on to read the Journals) involved with rhizosphere interactions between fungi, microbes, roots and plant benefits.  This is stuff directly from the electron microscope level of detail ladies and gentlemen, but fascinating all the same and eye opening to what transpires on the surface of the rooted crops we all try to grow.  It is my wish to help many of you garner an understanding that the aerobic fungi are sincerely vital to nutrient uptake, root health, water uptake and carbohydrate (which includes sugars) flow within the plants.  I offer a few real nuggets (8) to store in a net of neurons inside your head…

VAM spores and hyphae — Spores are attracted to specific exudates from the host roots. Spores then will infect the host and live symbiotically and aid in propagating the fungus to live again and again.                       Courtesy:

Fungal hyphae Courtesy: Western, Australia

  1.  Of the thousands (over 4500 species have been identified by rRNA gene identification processes) of bacteria that grow in soils, scientists have had much difficulty to grow on laboratory media; much due to the mutualistic relationships with one species to another, age of the plant root, soil temperatures changing throughout the season and the differing plant species that extend roots (weeds versus target crop).
  2. Early on in a crops life, specific bacterial communities excel and then as the life of the plant-root grows, temperatures increase the bacteria can degrade and consume more complex substrates such as complex proteins, and sugars
  3. Mycorrhizal fungi are great protectors of bacterial pathogens that cause root and subsequent above ground shoot diseases – they develop antibiotics, can out-compete infection sites by providing barrier protection to the root
  4. The mycelial or hyphae network can link plants of the same and yes, different species and transfer C compounds back and forth – sharing and donating the goods so to speak
  5. Mycorrhizae attract certain bacteria to the root/host and join forces to benefit the plant – invasive species (weeds) can and do negatively effect symbiotic fungal relationships to the target crop being grown
  6. Mycorrhizal fungi aid in maintaining a barrier/network around the root in highly saline and alkali soils, protecting from desiccation and injury due to salts
  7. Fungal species that are symbiotic to maize for instance are truly due to the composition and release of certain exudates from those maize roots, which attract and aid in multiplying the fungi infection and spore production for future plant-roots.
  8. Root exudates are estimated to be 2 to 10 percent of the total fixed carbon for an individual plant – mycologists say this is not a negative loss of carbon for the plant/crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         I could add at least 15 other facts to store in your heads, but for now these may suffice.This last image below is how a network of fungal hyphae can aid, protect and share goodies as I mentioned in items 1 &  4 (above) to facilitate nutrient uptake between a forage sorghum and flax.  Intercropping does work and this provides factual concepts why it does make differences in crop growth, the secrets of the soil biome is just fantastic folks.
  9.   Blog written by:  Michael Petersen, Orthman Lead Agronomist   November 2019
    Intercropping with sorghum drastically enhanced flax’s growth (+46% increase). Nutrient uptake was facilitated via the common
    mycorrhizal network (CMN) Flax. Mixed. Sorghum. Walder, F., Niemann, H., Natarajan, M., Lehmann, M.F., Boller, T. and
    Wiemken, A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159:

2019 Pioneer/Orthman Strip-Till results with Pioneer 9 Hybrids – Nebraska

From cold Colorado where the temperatures have dropped to near zero, snow from 3 to 12 inches in places which sure puts the ‘Ky-Bosch’ on getting harvest done, but back in Nebraska where the weather did not hit quite as quick the lads at North Forty Pioneer dealership, Polk, Nebraska shared with us their yield results which we aided and abetted their work with the Orthman 1tRIPr and some fertility placed in the tillzone.  Nick Hatfield informed us he was pleased with the results in a cool and wet year that hovered over that part of Nebraska.

The lads finished harvesting last week.  These were all 4 row plots on 30 inch rows.  What the guys are shooting for and we at Orthman have been advocating is to keep the inputs of Nitrogen as low as we can and not knock the plant health or yield.  A bit of scrutiny but the results speak highly of what Nick and Dennis accomplished.  Total with pre-plant, starter, sidedress operations and late season applications was 200.3 lbs of N.

With that we can count and calculate the amount to produce 230bpa up to 267bpa ranges from 0.87lbs/bushel to a low of 0.76lbs/bu.  Those of us involved with this plot and others continues to be raise top notch yields on the least amount of pounds of N per bushel.   Our question to you, is this a possibility on your farm as you raise rain-fed or irrigated corn?  Now this happened to be lightly irrigated corn near Polk, Nebraska.

The out-of-date thoughts of 1.1 to 1.5lbs N/bushel which has been the recommendations for a long time in a conventional tillage systems is not as efficient and ecologically minded as what we promote with the Orthman Strip-Till System approach.  We are working with growers in the Sandhills of Nebraska and Colorado that are tweaking their fertility programs and management to reside at 0.65-0.75lbs N/bushel corn yields.  Placing N and other nutrients right in the pathway of the dominant portion of the downward growing root system is absolutely the method to make this happen and to split apply in the growing season.  It is still important to meet the plant needs at the critical physiological times.  When growers learn and make this a program for their farms and fields, they grow some pretty fantastic crops.  Understand everyone that the skies have to be favorable before dry down.

We at Orthman are very pleased for Nick and Dennis who cooperate with us on several endeavors to promote wise stewardship and conservation practices in east central Nebraska. Congratulations guys!  More to come from other growers in the coming days.

2019 Corn Harvest – Was Crop Health in Late Season as You Liked?

Good folks all across the Central part of the United States up into the Great Lakes region and out west are getting into the fields,  Just these past few days tho, the ugly winds swept down out of Canada and have blown down corn and twisted up soybeans that were not harvested making for a large number of growers cranky and in a fashion slapped again by Mother Nature.  I sympathize guys and gals, boy do I ever.

That matter brings me to a fact of late season fertility when your corn for instance was near or at R2 stage.  The plant has just gone through the most intensive period of its lifespan and called for extensive amounts through the roots and leaves for potassium (K), phosphorus (P), nitrogen (N), and sulfur (S) to be translocated into those embryos of the ear.  The stalk being the conduit to get those materials in the form of complex sugars, proteins, fats and fatty acids moved to meet all the genetic demands to fill those kernels.  As that happened a great deal of products were translocated at times at the expense of some other metabolic processes.  What a busy time, much akin to some of the complex busy fly-overs and turns on and off I20 and I10 in the Dallas-Ft. Worth corridors at 7:45am on a Monday morning. Cars going every different direction.

Corn at R2 stage
Courtesy Kansas State Univ.

Where am I going with this?  Consider in that busy traffic of sugars moving, water, nutrients demanded to develop proteins and sugars as well as other carbohydrates developed and going up and down the phloem and xylem tissue highways, from the roots way up to the ear and other fluids from the leaves to the ear – now and then there is some slowed or up against the guard rail with the hood up and steam coming out and a flat tire. Whoa! Something went wrong or petered out. A car with the right amount of K just went flat to a stop.  This all might be an over simplistic representation of the right ions zipping around and hung up or lost in the system of reproduction of a corn plant.  But as the saying goes, “Stuff Happens”.  When this occurs we may observe later a plant lose stalk strength or the top of the plant cracks and blows out or the ear shank drops a full ear out of the shucks and plop – on the ground sits an ear of 650 kernels.  Hmmmm!  Did a miss of maybe a late application or even a miss up in the earlier part of the crops lifespan not get a dose of proper nutrients to feed the plant for the super busy Monday morning on the I10/I20 roadways?  Yes wind is a bugger at 50mph for a long period.  Dried down stalks, maybe some stalk rot crept in or a long dry period and the plant just did not have enough moisture to remain healthy and your plant health was compromised.  My point is, did we look back at the R1-R2 stage and consider a booster shot of the right materials to take the plant all the way to harvest.

For at times I know this is late to be talking about nutrient adequacy.  But harvest shows anyone of us some details we may have overlooked or forgot about until the snout of the combine is running through the field and you are seeing down corn and ears on the ground.  Yes wind is wind, I acknowledge that folks and when the winds are fierce, well we can do nothing about it.

We at Orthman believe a well managed fertility system not only starts with pre-plant nutrient sources and materials, placed at the best depths to be intercepted by the roots but the mid and late season nutrient applications will help your crop perform near your expectations.  Yes Mother Nature as we call it must be right.  Please do not hesitate to talk with our guys that wear the Orthman hats and shirts, contact me Orthman’s soils man if you like and let us discuss some of thos questions you may have.  Your Extension Specialists, Seed Company’s agronomists; they all can discuss what late nutrient applications may mean in the corn crops life all the way to harvest.

May harvest go better and get it into the bins for you all.

Interim Soil Characteristics of Tillage for Today.

Orthman 1tRIPr soil resistance studies tell a story of what Strip-Till is all about

In my last report on September 30th, I offered some more of our observations how this spring (2019) affected soils, with strip tillage, plant root growth and some of the parameters of what the root does to compensate for compacted soils.  We looked at three different row sites in the study; in the present years row where corn is growing, in the mid section of a row where the tractor tires rode and last the guess row.  Those spots are sites in the field for row crop farmer they understand where the soils should be the toughest [wheel traffic rows], where the soil should be the most mellow and what is happening right where the plant lives.  It is our aim for you the reader to gain a better  perspective of what the soil gives or resists to the newly planted crop baby root system, will any of the plants have to put out more or less energy to gain access to water and soil-solution nutrients for growth?

Before I dive in, I want to ask you a question – how many of your implement dealerships, fertility providers, agronomic scout/consultants, seed dealers even; offer you the kind of information we at Orthman Manufacturing are sharing?  Yup, thought so.  Does not surprise me.  Excuse my chasing you with a loaded question, however we in the wide-wide world of tillage, folks assume too much that certain tillage events are necessary when they truly may or may not be to grow your crops.  We have assumed since man started using an ox to pull a rudimentary plow that turning the soil over and over was the way to prepare a seedbed.  Well not quite so.  Nor should we always assume that the Direct Seeding method offers the “perfect” answer to solving the farmers past soil woes of erosion, runoff, lack of the soil breathing or intake of water, loss of carbonaceous materials, declining soil health, and a poor response to commercial fertilizers.  So where do we situate ourselves you may ask?  Moldboard plowing and four or more subsequent passes before a planter or drill inserts seeds is most usually detrimental to soil physical properties, biological life and response. Okay what works best on your fields Mister?  As a soil scientist now for 45+ years, one who came out of the era of acute awareness of soil quality/health, when Conservation Tillage was getting its roots established and defining what it was and what was not in the USDA-Soil Conservation Service — I can tell you this has been much of a journey of change and for some growers even confusion.  I can tell you it was infused into our daily lives to understand and articulate the principles, the modes of action, the good practices versus those that harm soils all across North America.  I excavated soils on level soil landscapes to mountain sides as a public servant to better understand whether soils were resilient, conducive to erosion by water and wind, whether soils are of a prime farmland designation or wildlands and a whole lot more.  I digress – whether in my travels for work I believe in taking care of the finite soil resource.  I have seen and dug in soils in the lands of Queensland, Australia and New South Wales, the Saucony of France, the rich valley of the Volga River, the amazing soils of the Danube in Serbia and Hungary, the High Feldt of South Africa, western Plains of Kansas, the loessal soils of Nebraska, and the lake bed areas of northern Ohio.  Most farmers want their soils to be the most productive.  I throw in a BUT here.  The old ways still pursue, haunt, follow or guide them to achieving what they hope will be produced.  So what works Mike Petersen?

Less inversion tillage for sure.  Slicing, dicing, rolling, tumbling, and crushing soil aggregates are not the way for sure.  With all the soils I have tipped a spade into, now in 5 continents, I have come to a critical point that we agriculturists have flagellated the soil resource far too much, expected big response from those soils and have been disappointed whether the climatic conditions were primo or not.  My observations, digging, studying over the 45+ years have shown me that strip tillage in a concentrated band that does not shear soil and roll it like a plow or disk works extremely well.  Is it the next best operation/practice to accomplish?  Closer than anything else.

With certain tillage that tumble, smear and crash soil these events have a detrimental cause and effect?

SEM micrograph of a soil microaggregate Courtesy:, Spain

Soil aggregates and microaggregates are thrashed around, microscopic pores, channels and cracks between aggregates are crushed, squeezed, smeared when too moist, organic components are dislodged from the silt and clay particles and when exposed to the sun and warmer air they volatilize and waft away.  So as you see with the image to the left (the 11 dots in lower right corner give you an idea of the size of this microaggregate at 1 micron in size).  Itty bitty creatures, amoeba, bacteria are mashed, rolled, crushed and exposed to the atmosphere and the soil-water films are dried to extinction.  Earthworms are dislodged from their burrows and then either rolled, crushed or cut in two – some make it and others die.  Sounds like a battle zone – yes?  I paint a pretty bad scene I know.  Can we avoid such?  I do not mean to be a scolding momma, but to point out these little particles of the soil form into larger ones to make aggregates and soil structural units such as crumb, granules, tiny little blocks or prisms which are the foundation of good, healthy soils.  It takes these tiny pieces to make the soil come together in specific forms/shapes, provide a good medium for water to penetrate as well as roots, as well as mycorrhizae hyphae and organic compounds to adhere to the soil and the roots to supply nutrients from the microbes and in the soil solution between and on the microaggregates.  It all all must work and stick together in a fashion.  What a marvelous world below our feet where roots grow and thrive or work hard to penetrate that I have had the privilege to study, work with and get paid doing it.

Maybe one or two of you may understand a touch more why I have had my head looking in holes in the ground for over 40 years to see the marvels and mystery of the soil.  Often I have wished to have a scanning electron microscope at my disposal, but I am not capable of dropping 3-5M dollars on such an instrument – whewie!  The intricacies of the soil, how they glue together to form into a cohesive angular blocky structure for instance is vital to soils having resiliency and high value to a growing root.

The chart to the left and below is from a field that has been in strip tillage since 2002 under overhead sprinkler irrigation.  The rotation of crops has been continuous corn for 7 years, soybeans for 1 year, irrigated grain sorghum then back to irrigated corn for 8 years.  The grower has alternated the depth of strip till knife between 6 to 10 inches.  Six inches when soybeans and ten inches when in corn or sorghum.  The values you read are from May 2019 when the soil moisture condition was 85% of field capacity.  The soil organic matter (SOM) level is 2.4% in the upper 3 inches and 1.95% in the 3 to 6 inch zone.

This soil has been measured for intake rate at the surface for four years in a row during a research study for the Colorado Corn Growers.  Prior to strip-tillage we measured intake rates of 0.90 in/hour, then in the fourth year of strip till the intake rate in the guess row was 4.4 inches/hour and in the wheel row (trafficked row) it still had improved to 2.4 in/hr.  That is a 4.9 times improvement.  We also measured SOM during the same study; the SOM improved from o.75 to 2.0% in 9 years which covered the span of the intake study also.  In the last years of the entire study sponsored by Colorado Corn Growers we measured soil aggregate stability of this same soil, the soil aggregate values are measured with a “slaking test” that USDA-NRCS still encourage people to do and their Soil Health Specialists in each state are eager to work with people on.  I ran these analyses with one of the progenitors of the soil slake test for aggregate stability, Dr. Robert Grossman, USDA-NRCS Soil Survey Laboratory-Lincoln, Nebraska before this became “a thing” within the USDA.  I still run these tests and find amazing results from Strip-Till and No-Tilled soils all across the states I get to dig holes in.   The soil aggregates rated a 0 to 1 the first year on a scale of 1 to 5 with 5 being the most stable soil aggregates.  In the last year of the study the aggregate stability improved to a 5 demonstrating the aggregates were more stable to water melting the micro and macro-aggregates.  All of that to say this field in Eastern Colorado has had many studies and I have had a constant eye (year to year since 2000) on to offer what strip till has done and can do.

As you can see in the chart of penetration resistance, there is a jump in vertical resistance at 8-9 inches.  This field was strip tilled at the 9 inch depth this spring.  Even in the row where traffic is the jump in resistance is significant.  The corn that was growing at the time was at V2 stage and the seedling root had not grown beyond the 5 inch depth so it was not impacted by the soil resistance that would have been felt by the 9 inch depth in the middle of the strip tilled zone column.  As has been noted in previous articles on this Precision Tillage website, very young plants will encounter root penetration and elongation at the tip when soil resistance exceeds 60 psi.

I will continue to bring more about our spring soil resistance studies as the next couple weeks come.  Stay tuned.

2019 report of early season soil resistance in irrigated sandy loam soils and pertinent recent root tip research

In my last article I posted (9/23/19) regarding what can happen even in moist soils like what happened this spring of 2019 – I shared data of soil resistance from the perspective of vertical and horizontal compaction in silt loam and silty clay loam soils.

With today’s segment of the large amount of data I will draw your attention to sampled sites of sandy loam soils (approx. 14% clay, 68% sand and the remaining 18% silt).  I was allowed to look and dig in conditions that are normally plowed with a moldboard plow and 4 operations after the pass of the plow, overhead sprinkler strip-till systems approach and then strip-till furrow irrigated.  This ground has been farmed since the early 1900’s by the same family and irrigated.  In the last ten years they switched to part of the entire farm to strip-till for their corn acres.  The family has grown corn, malting barley, sugar beets, and bulk onions as their rotation for more than 30 years.

Fig. 1 Strip-Till beneath overhead center pivot sprinklers. Crop is corn. Has been strip tilled now for 6 years.



First chart of Strip-Till under Pivot Irrigation

The soils when I sampled back in the first days of June were very moist after the frequent spring rains which were wonderful except for getting crops planted when the calendar seemed to point to NOW!  Take a look at the first graphic of depicting vertical compaction in the row where the current crop resides, the guess row and then the wheel row.  The grower strip tills with an 8 row-30 inch Orthman 1tRIPr at 8-9 inch depth and then plants with a 12 row planter all operations done with RTK-GPS guidance.  My positioning of where I sampled for the guess row (see the blue line in the graph to your left) got in the row where the wheels of the planter rode.  The green line depicts the amount of down-force the grower applied with his planter.  The red line exhibits what occurred in the wheel row which I did find quite easily.  Just below the depth the shank and point ran vertical compaction jumps up to 300+ pounds per square inch (psi).  This soil is low in soil organic matter but the grower informed me that they have risen in the last 6 years with the advent of his using strip-till to right at 1.5% from under 1.0%.  They do not graze stalks overwinter.

Second chart of Strip-Till surface furrow irrigation

In this chart the grower still follows the previous years row on a shallow bed and strip-tills corn.  The lay of the ground is very flat.  As in Figure 1, this chart Figure 2. to your left; red line is the wheel row, blue line is the guess row and green line is in-crop row where corn is growing.  The curved line in red depicts that lateral compaction rises to 27 psi then falls off with depth with a small rise at 9 inches as where the depth of the strip-till shank and point was set during the spring strip till operation.  With the green line where the corn was planted at 3 inch depth there is some lateral resistance to a point of 22 psi.  As stated in the previous blog article last wrote (9/22), root growth at the tip is negatively influenced above the 60 psi range from extending in the soil medium.  So we are seeing any problem due to impedance.  As I was digging, probing and looking the roots, above the 6 inch depth, were not kinked, blunted or swollen at the tip as the seedling roots were growing out and down at the normal 25 degrees of the soil surface.

It is concerning that these soils become hard with drying below that 6 inch depth and a strong 20X hand lens I saw a blunting, helical  and twisted appearance to the root tip and back some 25mm ( 1 inch).  For me I am now curious as a cat.  I got back to my office and looked into my quiver of research papers from Plant Physiology regarding root growth.  Colombi et al. wrote a striking paper in 2017 about shape of roots that encounter increased soil strength (compacted soils).  The premise of their efforts in crops early development that roots have differing shapes some being more elliptical, thickening and larger intercellular spaces behind the root tips.  Researchers at Penn State in 2013 corroborate these kind of findings in corn.  Postma and Lynch, 2011 & 2013 published findings that support this for us to understand how a corn plant deals with physical stresses of water, low nutrient availability and soil impedance.

Fig. 2: Lateral view of compaction in Pivot irrigated field with Strip-Till.

What am I saying here?  When roots attempt to grow in and through more dense, compacted soils they are able to develop cellular structures that have stronger cell walls and larger cavities to hold air behind the root tip to aid in forcing the root deeper and further into the soil.  Anne Ju at Cornell University suggests that roots will form helices to then like a spring force the root tip to push off and extend further when the environment of the soil (Cornell Chronicle, Sept. 2012).  Some scientists call this a root buckling effect. When the spring release the root pushed forward and through.  See the images directly below and to the left..

Also some other Cornell University scientists have revealed with micrographs that very fine root hairs will extend right behind this coil-like structure to anchor the root and the spring-like action is even stronger to push the root forward.  Wow!  There is a point where the root in it’s abilility to overcome soil resistance is around 2MPa or about 300 psi and root tip growth may cease all together. This was observed with Barrelclover in a lab.

This material I read in the Itai Cohen Groups website,   authored by, Silverberg, et al.

Concluding Remarks:

Whether we are observing corn, wheat, Barrelclover from the Mediterranean area, peas, soybeans or barley – plant roots exert a certain amount of push force to grow down and out from the plant into the soil to gain water and nutrients for growth and maintaining life until senescence.  Our purpose to carry out these early soil resistance studies to offer what is happening with three common tillage systems of the corn growing regions we at Orthman work in.

In this article I wanted to give you an indication of what we observed in irrigated sandy loam soils.  In the fields where I was looking (sandy loam soils) the roots had not extended down below the 9 inch depth.  The penetrometer encountered pressures of 200 to over 300 psi of resistance.  In the next rendition I will compare the resistance values we observed in sandy loam soils that were furrow irrigated with strip till and with the moldboard plow tillage systems approach.  Some striking differences.  Until then….

Cornell Univ. images of twisting of roots in response to longitudinal forces of soil resistance.

References of research:

Root tip shape governs root elongation under increased soil strength, Colombi et al., 2017, Plant Physiology, Vol 174, pp. 2289-2301
Root cortical aerenchyma enhances growth of Zea mays on soils with suboptimal availability of Nitrogen, Phosphorus and Potassium., Postma J. and Lynch, J.P., 2011, Plant Physiology, pp. 1104-1111
Theoretical evidence of the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Postma,J and Lynch, J.P. 2010, Annals of Botany, Vol 107, pp.829-841
3D Imaging and mechanical modeling of helical buckling in Medicago trunccatula plant roots. Silberberg, J. et al., 2012, Proceedings of the National Academy of Sciences, Vol 109(42) pp.16794-16799